DATE OF EXAM - Solution
SUBJECT NAME -Analysis -I - MIDTERM Exam - Semester I

Section 1

1. Let (an) be a cauchy sequence of real numbers. Suppose there is a subsequence (ay,) such that
ay, — a. Prove that a, — a.

2. Determine all continuous functions f: R — R such that f(x) € Z for all z € R.

3. Suppose f is a function satisfying |f(x) — f(y)| < |x —y|? for all z, y € R. Show that f is constant.

Solution: (1) We have (a,) is cauchy and ay, — a, so for each € > 0 there exist a M € N such that

€

‘an _aml < 2a

€
lan, —al < 2 Y n,m,ng > M.
Now take ny > M then we have

€ €
|an—a|:|an—ank—|—ank—a\S\an—ank|—|—|ank—a|<§—|—§=e YV n> M.

Hence a,, — a.

(2) f is continuous function so f(R) is a conneted set in R. We are given f(R) C Z and only con-
nected subset of Z are singleton sets. So f(R) = n for some n € Z. So all the continuous function
satisfying f(R) C Z is given by {f(z) =n, V © € R},ez.

(3) We have for any zp € R

2
[l = Jim |5 (F(wo+ 1) — Fao))| < im o =0,

—0

So we have f/ =0 on R i.e f is a constant function. O
Section 2

1. Prove that cauchy sequence are convergent.

2. Let (a,) be a sequence of real numbers. Let b, = a, + |a,| and ¢, = |an| — ay, for alln > 1. Prove
that )", a, converges absolutely if and only if >, a, and ), b, converge.

3. Prove that a continuous function on [a,b] is uniformly continuous.

4. Let f:R — R be a function with IVP and x € R. Suppose lim f(x,) = f(x) for any sequence x,, — x
with (f(xy)) is a constant sequence. Prove that f is continuous at x.

5. Let f:(0,1) — R is a differentiable function having a local mazimum at a € (0,1). Prove that
f'(a) = 0.

6. Let f : R — R is a differentiable function such f(xz +vy) = f(z) + f(y) for any z, y € [0,1]. Prove
that there exists a € R such that f(x) = ax for all € [0,1].

Solution: (1) See 3.11 Theorem of W. Rudin (principles of mathematical analysis).

(2) Let assume ), a, converges absolutely then ) b, converges as |b,| < 2|ay|.



Now 25:1 an = 271:[:1 by, — 25:1 |an| as by, = apn + |an|. Both limy_ o 25:1 by, and limy 00 25:1 |an]
exist so limy_ye0 25:1 a, exist i.e ) a, converges.

Now assume ) a, and ) b, converge the using 22;1 lan] =32
convergence of > a,.

N
n=1

by, — Zgﬂ a,, we get the absolutely

(3) See 4.19 Theorem of W. Rudin (principles of mathematical analysis) and use the fact that [a,b]
is a compact set in R.

(4) Let f is not continuous at = then there exist a sequence (u,,) such that u, — z but f(u,) = f(x). So
for each € > 0 there exist infinitely many terms say (un, )k of (u,) such that |f(un,) — f(z)| > € V ng ie
fun,) > f(x)+eor f(uy,) < f(z)—e will happen for infinitely ny, W.l.o.g assume that f(v;) > f(z)+e
holds for a subsequence say (v;); of (uy, ) (v; = unkj). f(z) < f(z) + € < f(v;) so by IVP we get there
exist z; € (x,v;) or (vj,x) such that f(z;) = f(z) + € Now we have z; — « but lim;_,o, = f(z) + € as
f(z;) is a constant sequence namely f(z) = e. which give the contradiction to the condition given in the
problem. So f is continuous at x.

(5) f is differentiable function so we have f’(a) = limy,_,o+ M

Let assume f’(a) > 0 then limj_,o+ w > 0 which will imply that there is a 6 > 0 such that
fla+h) > f(a) V0 < h <§. This contradict the fact that f has local maximum at a.

Similar if f'(a) < 0 using f’(a) = limy,_,o- M
f has local maximum at a. So f'(a) = 0.

= hmhﬁo— 7f(a+h}27f(a).

we will get again a contradiction to the fact that

(6) We have f(0+0) = f(0) + f(0) which give f(0) = 0. Now

() = im TEE IO iy T ) g0 m) = 1) + 00)
Let a = f/(0) then f'(x) = a together with f(0) = 0 will give f(z) = ax. O

Section 3

1. Let (a,) be a sequence of real numbers.

(a) If ¢ is a limit point of (a,). Prove that there is a subsequence (ax,) such that ar, — c¢ and
lima, <c<lima,.

(b) Prove that a,, — oo if and only if lim a,, = oco.

2. (a) f:R =R be a function with IVP. Can f have simple discontinuties? Justify your answer.
(b) f:(a,b) = R be a strictly increasing continuous function. Prove that there are extended real numbers
A and B and a continuous function ¢ : (A, B) = (a,b) such that ¢(f(z)) =« for all x € (a,b).

3. (a) Let f : [a,b] = R be a differentiable function and A > 0 such that f(a) =0 and |f'(z)| < A|f(z)]
for all x € [a,b] Prove that f =0 on [a,b].

(b) Prove Taylors theorem: Let f : [0,1] — R be a function such that [’ exists and continuous on [0,1]
and f" exists on (0,1). Prove that there is a t € (0,1) such that f(1) = f(0) + f'(0) + fT(t)

Solution 1. (a) Since ¢ is a limit point of (a,) then for each k € N there exist My € N such that
|an, —¢| < 55 ¥ n > Mj. Now we can chose a subsequence (an,,) such that nj, > My and |an, —c| < 5.
Now it is easy to see that lim,, o0 apn, = c.



Now let E be the set of all limit points of (a,) then lim a,, = inf E and lim = sup E (see 3.16 Definition
of W. Rudin). So we have lima,, < ¢ <lima, as c € E.

(b) Also we can write lim a,, = sup,, infy>, an, = lim,_, o inf>, an. Let lima,, = oo then we get for each
M > 0 there exit N € N such that infz>, > M V n > N thats give ap > M V k > N this imply
(y — 00.

Now assume a,, — oo then for each M > 0 there exist N € N such that a,, > M V k > N. This will give

infr>n ar > M which imply sup,, infy>, > M Vn > N. So we get lima,, = co.
2.(a) Define the function f as following

—z if z e (-1,0)
flx) = : if z=0
xz if z€(0,1)

Then f be a function with IVP but has simple discontinuty at z = 0.

(b) Define A = lim,_,,+ f(z) and B = lim,_,;~ f(z). Since f is a increasing function so it has at most
countable discontinuties. Let D = {x1, 3, -+ ,Zp, -} be the set of discontinuties of f. Then we can
write (a,b) = Up>1(tn,vn) UD, v, < T, < upy1 such that f is continuous at each (uy,v,) and this
will give f(un,v,) = (f(un), f(vn)). Since f is stictly increasing (one-one) f~!: f(a,b) — (a,b) exist.
first we will prove f~! is continuous and this will be done by showing f(C) is open whenever C' is open
in (a,b). Let (r1,r2) C (a,b) if (r1,72) C (un,vy,) for some n then f(r1,7r2) = (f(r1), f(r2)) is open in
f(a,b). W.lg.n assume (11,72) C (Un, Un) U (Unt1, Ung1) U{rn} then f(ri,r2) = (f(un), f(vnt1)) N f(a,b)
is open in f(a,b). We can alway find a continuous function g : (A4, B) \ f(a,b) — R with the fact that
a<glx)<bVaxe (A B)\ fla,b). Now we can define ¢ : (A, B) — (a,b) as

Y@ if x € f(a,b)
(x) —{ g(x) if =€ (A, B)\ f(a,b)

We have continuous function ¢ : (4, B) — (a,b) such that ¢(f(x)) =z for all z € (a,b).
3. (a) Let xg = ir[lfb]{x : f'(z) # 0}. If 2o = a then f' = 0 and we are done. So assume a < zo < b.
xre|a,
Now mean value theorem will give
f(@o) = f(zo) — fla) = f'(c)(xo —a) a<c<zo

From above we get 0 < ‘f,(%)l < |f(zo)| = |zo — al|f'(c)| which give f'(c) # 0. But definition of z¢ and
a < ¢ < xo will give f/(¢) = 0. So we got a contradiction which will imply g = ai.e f/ =0 and f(a) =0
give f = 0.

(b) See the 5.15 Theorem of W. Rudin with [a,b] = [0,1], n=2, a=0and §=1. |



